Navigate Up
Sign In
Johns Hopkins Medicine web site Johns Hopkins Medical Institutes Biological Chemistry Home
Erin Goley Portrait

Erin Goley
Assistant Professor of Biological Chemistry
Johns Hopkins University School of Medicine


725 N. Wolfe Street, 520 WBSB
Baltimore, MD 21205
Office Phone: 410-502-4931
Lab Phone: 410-502-2361
Fax: 410-955-5759
Email: egoley1@jhmi.edu
Lab Web Site

Click Here for PDF of CV

Bacterial cell biology: cytoskeletal function during growth and division

The bacterial cell, once viewed as lacking internal organization, is in fact exquisitely structured at the subcellular level, and this spatial organization is critical for cellular survival and reproduction. As in eukaryotes, prokaryotic cell shape and internal structure are defined and dynamically remodeled by cytoskeletal elements. These proteins play critical roles in essential processes like cytokinesis and chromosome segregation, making them attractive targets for the development of novel antibiotics. Nevertheless, our understanding of the physiological functions of bacterial cytoskeletal proteins and the mechanisms by which they carry out their roles is still in its infancy. Our lab focuses on investigating cytoskeletal processes in bacteria, with current effort concentrated on understanding cytokinesis in the model bacterium, Caulobacter crescentus. The mechanisms underlying cell cycle progression and development are well-characterized in Caulobacter, making it an ideal system to address cytoskeletal function in the context of a well-defined cell cycle regulatory paradigm.

Cytoskeletal function during division: To tackle the question of how bacterial cells divide, we focus primarily on the function and regulation of the highly conserved tubulin-like protein, FtsZ. FtsZ is thought to act as a scaffold for assembly of the cytokinetic machinery, to generate constrictive forces that drive division, and, ultimately, to direct remodeling of the cell wall. However, the molecular details of FtsZ function are largely unknown. To gain insight into the mechanisms and regulation of bacterial growth and division, we are asking questions such as:

• How do the superstructure and dynamics of FtsZ polymers relate to its function?
• How is FtsZ attached to the membrane, and how does it generate force?
• How does FtsZ direct remodeling of the cell wall?
• How is the activity of FtsZ is regulated over the cell cycle?

We take a multi-faceted approach to address these questions, combining bacterial genetics, microscopy, biochemistry, and in vitro reconstitution to obtain a comprehensive view of the mechanisms of FtsZ action. These studies will inform models for how proteins at the division site direct cell growth and division and how these processes are integrated with other cell cycle events in time and space. In light of the high degree of conservation of cell division proteins among bacteria, our results will be relevant to the vast majority of bacterial species, including important human and animal pathogens.
Recent Publications

Meier EL and Goley ED. (2014) Form and function of the bacterial cytokinetic ring. Curr Opin Cell Biol. 26:19-27. http://dx.doi.org/10.1016/j.ceb.2013.08.006

Goley ED (2013) Tiny cells meet big questions: a closer look at bacterial cell biology. Mol Biol Cell. 24:1099-102.
Pubmed Reference

Biteen JS, Goley ED, Shapiro L, Moerner WE. (2012) Three-Dimensional Super-Resolution Imaging of the Midplane Protein FtsZ in Live Caulobacter crescents cells Using Astigmatism. Chemphyschem. 13:1007-12.
PubMed Reference​ 

Goley ED*, Yeh YC*, Hong SH, Fero MJ, Abeliuk E, McAdams HH, Shapiro L.  (2011)  Assembly of the Caulobacter cell division machine.  Mol. Micro. 80:1680-1698.
PubMed Reference 

Hsiao-lu DL, Lord SJ, Iwanaga S, Zhan K, Xie H, Williams JC, Wang H, Bowman GR, Goley ED, Shapiro L, Tweig RJ, Rao J, Moerner WE. (2010) Superresolution Imaging of Targeted Proteins in Living Cells Using Photoactivatable Organic Fluorophores. J Am Chem Soc. 132:15099-15101. 
PubMed Reference 

Goley ED, Dye NA, Werner JN, Gitai Z, Shapiro L.  (2010)  Imaging-based identification of a critical regulator of FtsZ protofilament curvature in Caulobacter.  Mol. Cell.  39:975-987.
PubMed Reference 

Goley ED, Comolli LR, Fero KE, Downing KH, Shapiro L.  (2010) DipM links peptidoglycan remodeling to outer membrane organization in Caulobacter.  Mol. Micro.  77:56-73.
PubMed Reference 

Goley ED, Toro E, McAdams HH, Shapiro L.  (2009)  Dynamic Chromosome Organization and Protein Localization Coordinate the Regulatory Circuitry that Drives the Bacterial Cell Cycle.  Col Spring Harb. Symp. Quant. Biol.  74:55-64. [Review] 
PubMed Reference​

Goley ED, Iniesta AA, Shapiro L.  (2007)  Cell cycle regulation in Caulobacter: location, location, location.  J. Cell Sci. 120: 3501-7. [Review] 
PubMed Reference


© Copyright 2008-2012 Johns Hopkins University. All Rights Reserved.
Site development: Modern Tymes, LLC